26 research outputs found

    A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma

    Get PDF
    In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3(rd) leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a K-D in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (similar to 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.Thrombosis and Hemostasi

    Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consor tium

    Get PDF
    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community

    A review of spatial causal inference methods for environmental and epidemiological applications

    Get PDF
    The scientific rigor and computational methods of causal inference have had great impacts on many disciplines, but have only recently begun to take hold in spatial applications. Spatial casual inference poses analytic challenges due to complex correlation structures and interference between the treatment at one location and the outcomes at others. In this paper, we review the current literature on spatial causal inference and identify areas of future work. We first discuss methods that exploit spatial structure to account for unmeasured confounding variables. We then discuss causal analysis in the presence of spatial interference including several common assumptions used to reduce the complexity of the interference patterns under consideration. These methods are extended to the spatiotemporal case where we compare and contrast the potential outcomes framework with Granger causality, and to geostatistical analyses involving spatial random fields of treatments and responses. The methods are introduced in the context of observational environmental and epidemiological studies, and are compared using both a simulation study and analysis of the effect of ambient air pollution on COVID-19 mortality rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is provided

    The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors

    No full text
    EssentialsTissue factor (TF) isoforms are expressed in pancreatic neuroendocrine tumors (pNET). TF knockdown inhibits proliferation of human pNET cells in vitro. mTOR kinase inhibitor sapanisertib/MLN0128 suppresses TF expression in human pNET cells. Sapanisertib suppresses TF expression and activity and reduces the growth of pNET tumors in vivo. Background Full-length tissue factor (flTF) and alternatively spliced TF (asTF) contribute to growth and spread of pancreatic ductal adenocarcinoma. It is unknown, however, if flTF and/or asTF contribute to the pathobiology of pancreatic neuroendocrine tumors (pNETs). Objective To assess TF expression in pNETs and the effects of mTOR complex 1/2 (mTORC1/2) inhibition on pNET growth. Methods Human pNET specimens were immunostained for TF. Human pNET cell lines QGP1 and BON were evaluated for TF expression and responsiveness to mTOR inhibition. shRNA were used to knock down TF in BON. TF cofactor activity was assessed using a two-step FXa generation assay. TF promoter activity was assessed using transient transfection of human TF promoter-driven reporter constructs into cells. Mice bearing orthotopic BON tumors were treated with the mTORC1/2 ATP site competitive inhibitor sapanisertib/MLN0128 (3 mg kg(-1), oral gavage) for 34 days. Results Immunostaining of pNET tissue revealed flTF and asTF expression. BON and QGP1 expressed both TF isoforms, with BON exhibiting higher levels. shRNA directed against TF suppressed BON proliferation in vitro. Treatment of BON with sapanisertib inhibited mTOR signaling and suppressed TF levels. BON tumors grown in mice treated with sapanisertib had significantly less TF protein and cofactor activity, and were smaller compared with tumors grown in control mice. Conclusions TF isoforms are expressed in pNETs. Sapanisertib suppresses TF mRNA and protein expression as well as TF cofactor activity in vitro and in vivo. Thus, further studies are warranted to evaluate the clinical utility of TF-suppressing mTORC1/2 inhibitor sapanisertib in pNET management.Thrombosis and Hemostasi
    corecore